3.90 \(\int \frac{\sqrt{a+a \sec (e+f x)}}{\sqrt{c-c \sec (e+f x)}} \, dx\)

Optimal. Leaf size=51 \[ \frac{a \tan (e+f x) \log (1-\cos (e+f x))}{f \sqrt{a \sec (e+f x)+a} \sqrt{c-c \sec (e+f x)}} \]

[Out]

(a*Log[1 - Cos[e + f*x]]*Tan[e + f*x])/(f*Sqrt[a + a*Sec[e + f*x]]*Sqrt[c - c*Sec[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0863869, antiderivative size = 51, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.067, Rules used = {3911, 31} \[ \frac{a \tan (e+f x) \log (1-\cos (e+f x))}{f \sqrt{a \sec (e+f x)+a} \sqrt{c-c \sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + a*Sec[e + f*x]]/Sqrt[c - c*Sec[e + f*x]],x]

[Out]

(a*Log[1 - Cos[e + f*x]]*Tan[e + f*x])/(f*Sqrt[a + a*Sec[e + f*x]]*Sqrt[c - c*Sec[e + f*x]])

Rule 3911

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_), x_Symbol] :> -Dis
t[(a*c*Cot[e + f*x])/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]]), Subst[Int[((b + a*x)^(m - 1/2)*(d
+ c*x)^(n - 1/2))/x^(m + n), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] &&
EqQ[a^2 - b^2, 0] && IntegerQ[m - 1/2] && EqQ[m + n, 0]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{\sqrt{a+a \sec (e+f x)}}{\sqrt{c-c \sec (e+f x)}} \, dx &=\frac{(a c \tan (e+f x)) \operatorname{Subst}\left (\int \frac{1}{-c+c x} \, dx,x,\cos (e+f x)\right )}{f \sqrt{a+a \sec (e+f x)} \sqrt{c-c \sec (e+f x)}}\\ &=\frac{a \log (1-\cos (e+f x)) \tan (e+f x)}{f \sqrt{a+a \sec (e+f x)} \sqrt{c-c \sec (e+f x)}}\\ \end{align*}

Mathematica [C]  time = 0.877877, size = 86, normalized size = 1.69 \[ -\frac{\left (-1+e^{i (e+f x)}\right ) \left (f x+2 i \log \left (1-e^{i (e+f x)}\right )\right ) \sqrt{a (\sec (e+f x)+1)}}{f \left (1+e^{i (e+f x)}\right ) \sqrt{c-c \sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + a*Sec[e + f*x]]/Sqrt[c - c*Sec[e + f*x]],x]

[Out]

-(((-1 + E^(I*(e + f*x)))*(f*x + (2*I)*Log[1 - E^(I*(e + f*x))])*Sqrt[a*(1 + Sec[e + f*x])])/((1 + E^(I*(e + f
*x)))*f*Sqrt[c - c*Sec[e + f*x]]))

________________________________________________________________________________________

Maple [B]  time = 0.276, size = 97, normalized size = 1.9 \begin{align*}{\frac{\cos \left ( fx+e \right ) }{f\sin \left ( fx+e \right ) c}\sqrt{{\frac{a \left ( 1+\cos \left ( fx+e \right ) \right ) }{\cos \left ( fx+e \right ) }}} \left ( \ln \left ( 2\, \left ( 1+\cos \left ( fx+e \right ) \right ) ^{-1} \right ) -2\,\ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) \right ) \sqrt{{\frac{c \left ( -1+\cos \left ( fx+e \right ) \right ) }{\cos \left ( fx+e \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(f*x+e))^(1/2)/(c-c*sec(f*x+e))^(1/2),x)

[Out]

1/f*(1/cos(f*x+e)*a*(1+cos(f*x+e)))^(1/2)*(ln(2/(1+cos(f*x+e)))-2*ln(-(-1+cos(f*x+e))/sin(f*x+e)))*(c*(-1+cos(
f*x+e))/cos(f*x+e))^(1/2)*cos(f*x+e)/sin(f*x+e)/c

________________________________________________________________________________________

Maxima [A]  time = 1.52011, size = 88, normalized size = 1.73 \begin{align*} \frac{\frac{2 \, \sqrt{-a} \log \left (\frac{\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1}\right )}{\sqrt{c}} - \frac{\sqrt{-a} \log \left (\frac{\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 1\right )}{\sqrt{c}}}{f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))^(1/2)/(c-c*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

(2*sqrt(-a)*log(sin(f*x + e)/(cos(f*x + e) + 1))/sqrt(c) - sqrt(-a)*log(sin(f*x + e)^2/(cos(f*x + e) + 1)^2 +
1)/sqrt(c))/f

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{a \sec \left (f x + e\right ) + a} \sqrt{-c \sec \left (f x + e\right ) + c}}{c \sec \left (f x + e\right ) - c}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))^(1/2)/(c-c*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(a*sec(f*x + e) + a)*sqrt(-c*sec(f*x + e) + c)/(c*sec(f*x + e) - c), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a \left (\sec{\left (e + f x \right )} + 1\right )}}{\sqrt{- c \left (\sec{\left (e + f x \right )} - 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))**(1/2)/(c-c*sec(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(a*(sec(e + f*x) + 1))/sqrt(-c*(sec(e + f*x) - 1)), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))^(1/2)/(c-c*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

Timed out